Sub-Theme: Glacier mass balance at key Alaska sites and hydrological services

The ongoing works and optional plans to monitor the Kennicott Glacier, McCarthy, Alaska, USA

Regine Hock¹, Wanqin Guo², Shichang Kang², Haidong Han², Donghui Shangguan², Pascal Buri¹, Ruitang Yang², Yulan Zhang², Ting Wei²

1. Glacier Group, Geophysical Institute, University of Alaska Fairbanks
2. State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences
Outlines

• Research objectives
• Why Kennicott Glacier?
• Original work plan for 2018
• The NPS permitted Works have done in 2018
• New knowledge acquired from 2018 field work
• Optional plans for 2019-2020
Research objectives

• The changes of typical glacier in Circum-Arctic
 – Regional Climate change
 – Mass balance of typical glacier
 – Contributions of glaciers to regional hydrological cycles

• Anthropogenic source depositions on glaciers
 – Types and amounts of the anthropogenic depositions
 – The sources of these depositions
 – Their impacts on glacier ablation
Why Kennicott Glacier?

- Location of Kennicott Glacier

- Fairbanks (UAF) to Kennicott: ~600 km
Why Kennicott Glacier?

• Basic information for Kennicott Glacier
 – Area: 375 km² (RGI 6.0)
 – Debris cover: 85 km²
 – Length: 43.6 km
 – Four main branches
 • Root Glacier
 • Gates Glacier
 • LaChapelle Glacier
 • Kennicott Glacier

• High representativeness
 – Typical Alaska-type glacier

• Easier access
Why Kennicott Glacier?

• Major limitations working on Kennicott Glacier
 – Within Wrangell-St. Elias National Park
 • National Park Service (NPS) Research Permits are always needed to do scientific works in the park territory
 • Many operations are not allowed
 – No digging and drilling in ground and rocks
 – No installation of eye-catching objects
 – No drones (near McCarthy Airport, busy sky)
 – Not realistic to work on it fully depends on man power due to its big size
Original work plan for 2018

- Climate monitoring
 - Two AWSs
- Mass balance
 - 15 ablation stakes
- Other works
 - GPS
 - Automatic camera
 - GLOF monitoring
The NPS permitted works have done in 2018

- NPS has approved a short-term (1 year) permit on very limited works
 - One Weather Station
 - At the lower site
 - Two ablation stake sites
 - Two stakes on each site, one in clean ice, one in debris-cover
- Also collected some water/Ice samples

![Map with markers for Weather Station, Ablation Stakes, and Water/Ice Sample locations]
The NPS permitted works have done in 2018

- 2018 Field work duration: August 25 to September 9
- Team member:
 - From SKLCS, CAS: Wanqin Guo, Haidong Han, Donghui Shangguan, Ruitang Yang
 - From Glacier Group, UAF: Pascal Buri
The NPS permitted works have done in 2018

• Climate Monitoring
 – Installed a weather station on the lower site
 • Double layers WTH
 – 1 and 3 meters
 – Wind Direction + Speed
 – Air Temperature
 – Relative Humidity
 • Air pressure
 • Radiation (longwave + shortwave, income + outcome)
 • Snow depth (ultrasonic)
 • Precipitation
The NPS permitted works have done in 2018
The NPS permitted works have done in 2018

- Mass balance measurements: 4 ablation stakes
The NPS permitted works have done in 2018

- Mass balance measurements: 4 ablation stakes
 - Stake installation on 2 sites on the lower glacier reach, with two stakes at each site:
 - One in Clean Ice (C), another in Debris-covered Ice (D)
The NPS permitted works have done in 2018

- Ice/water sampling
New knowledge acquired from 2018 field work

- Large variation of glacier ablation over debris-covered area, comparing to clean ice region
 - Extraordinary surface roughness of the debris-covered glacier surface
 - Large number of supra-glacial lakes and rivers
New knowledge acquired from 2018 field work

- Large variation of glacier ablation over debris-covered area, comparing to clean ice region
New knowledge acquired from 2018 field work

- Large variation of glacier ablation over debris-covered area, comparing to clean ice region
New knowledge acquired from 2018 field work

- Large variation of glacier ablation over debris-covered area, comparing to clean ice region
 - Implications to mass balance measurement
 - Surface factors should have enormous influences on ablation
 - Surface type (flat or hilly, debris-covered or ice cliff)
 - Surface topography (orientation)
 - Thickness of the debris
 - The limited representativeness of stake site mass balance
 - May significantly differ from surrounding regions
 - Convert from site scale to regional mass balance will be problematic
 - May not be improved even by careful site selection
Optional plans for 2019-2020

- **Plan A**: field work based, mainly by helicopter
 - Mainly follows the original plan for 2018
 - Weather station
 - On an upper glacier site above 2000 m
 - Ablation stakes
 - Up to 6 along the central flowline
 - 2 more transversal stakes on 3 sites
 - GPS measurements
 - For surface velocity at stake site
 - Hidden Creek Lake GLOF monitoring
 - Lake level
 - Water temperature
 - Time-lapse camera
Optional plans for 2019-2020

• Plan A: field work based, mainly by helicopter
 – Details and expenses: installation in April, 2019
 • Helicopter time and expenses needed
 – AWS transportation (R66)
 » 2-3 round trips from McCarthy to upper glacier (2+ hours)
 – Stake installation (R66 for first day and R44 for second day)
 » 0.75 hour per stake (9 hours in total for 12 stakes)
 » 1 hour on GLOF site
 » 1 additional hour on AWS site
 – Finished in 2 days
 – Gross cost: ~$16670

• Group member needed
 – 2 for AWS site, 1 for stakes (with pilot), and 2 for GLOF site
Optional plans for 2019-2020

- **Plan A**: field work based, mainly by helicopter
 - Details and expenses: **data collections (3 in 2019-20)**
 - Helicopter time and expenses needed (R44)
 - AWS site
 » Maintenance and data downloading (0.5 hour)
 - Stake sites
 » 10 minutes per stake (2.6 hours in total for 16 stakes)
 - GLOF site
 » Maintenance and data downloading (0.5 hour)
 - Finished in 1 days
 - Gross cost: ~$4424 per field campaign, ~$13272 in total
 - Group member needed: 1-2 persons each time
Optional plans for 2019-2020

• **Plan A:** field work based, mainly by helicopter

 – **Advantages:**

 • Most effective, and easier to be carried out (minimum man power involvements)

 • More ground truth data collection, and precise mass balance at ablation stake sites

 – **Disadvantages:**

 • May out of budget (totally ~$29942 for two years work besides living and travelling expenses)

 • Will facing the representativeness problems (point scale mass balance measurements vs. regional scale’s)
Optional plans for 2019-2020

- **Plan B:** same as Plan A, but mainly by manpower
 - Details and expenses: **installation in April, 2019**
 - Additional materials/loads needed
 - Water, food, alpine tent, sleeping cushions and bags (for 6 persons)
 - Minimum number of group member needed: 6 in all
 - 2 for AWS site, 4 for stakes and GLOF site
 - Total time needed: 4-5 days
 - 3 hours per stake, 3-4 stakes per day, 3-4 days in total
 - 1 additional day on GLOF site
 - Helicopter time needed (R66)
 - 2-3 round trips from McCarthy to AWS site (2+ hours)
 - 1 additional hours to upper most stake site
 - Gross cost: ~$3950
 - Helicopter expenses: **data collection (3 times in 2019-20)**
 - same as Plan A, ~$4424 per field campaign, ~$13272 in total
Optional plans for 2019-2020

• Plan B: **field work based, but mainly by manpower**

 – Advantages:
 • Most funding effective (totally ~$17222 for two years works besides living and travelling expenses)
 • Same as Plan A, more ground truth data and precise mass balance at ablation stake sites

 – Disadvantages:
 • Most time and manpower consuming
 • Heavy individual loads, and hardest logistic supports (food, accommodation, device recharging, etc.)
 • Same as Plan A, will facing the representativeness problems of the point measurements
Optional plans for 2019-2020

- Plan C: **RS based, validate by stake measurements**
 - Details and expenses:
 - Equipment installation
 - Reduced new stakes: 4 in total
 - Helicopter time needed (R66)
 - AWS: 2+ hours
 - Stakes: 2+ hours
 - GLOF site: 0.5+ hours
 - Gross cost: ~$5135
 - Data collection
 - AWS: 0.5 hour
 - Stakes: 1.3 hour for 8 stakes
 - GLOF site: 0.5 hour
 - Gross cost: ~$3400 each time, $10200 in total
Optional plans for 2019-2020

• Plan C: RS based, validate by stake measurements
 – Invest little more than normal remote sensing based studies to reveal regional glacier changes
 • Mainly on purchasing high resolution satellite images
 – Usable stereo optical satellite images:
 • WorldView/Geo-Eye (100 km² minimum per order)
 – 0.3-0.5 m resolution
 – Achieve price: $28/km², ~$2800 in total
 – Tasking price: $48/km², ~$4800 in total
 • SPOT-6/7 (500 km² minimum per order)
 – 1.5 m resolution
 – Achieve price:￥36/km², ~￥18000 for whole glacier
 – Tasking price:￥60/km², ~￥30000 for whole glacier
 • ZY3:
 – 2.1 m resolution
 – Achieve price:￥4000/scene
 – Tasking price: ~￥6000/scene
Optional plans for 2019-2020

- **Plan C**: RS based, validate by stake measurements
 - **Advantages**:
 - Funding effective on the field work (minimum field works expenses, totally ~$15335 for two years work)
 - Regional rather than point scale mass balance, no needs on transformations
 - **Disadvantages**:
 - Less accurate than stake measurements (meters level vs centimeters scale)
 - Can only applied to retrieve yearly or even 2-3 years’ mass balance (larger uncertainties for shorter period)
Thank you!
Optional plans for 2019-2020

- Helicopter rental price
 - From **VS Helicopters Service Company** in Valdez
 - Distance between McCarthy and Valdez: 180 km
 - Known nearest spot has helicopter rental service
 - Two choices
 - R44:
 - Start Price: $3160 (with fuels for four hours), $790 for additional hour,
 - Loads: 371 kg (pilot, passenger, and baggage all together)
 - With limited cargo compartment, best for stake installation
 - R66:
 - Start Price: $ 4780 (with fuels for four hours), $1195 for additional hour
 - Loads: 420 kg (pilot, passenger, and baggage all together)
 - With good sized cargo compartment, best for AWS installation
 - Time consuming scale
 - Round trip from Valdez to McCarthy: ~2.2 hours
 - Round trip from McCarthy to upper glacier: 0.5 hour
Some RS-based research topics on Kennicott Glacier

- The recent surface mass balance of Kennicott Glacier derived from high resolution remote sensing
 - *Study the surface mass balance using high resolution optical (stereo) or microwave (InSAR) remote sensing*

- The evolvement of surface landforms of Kennicott Glacier and the impacts on its mass balance
 - *To study the fundamental mechanisms driving larger variations of mass balance among different parts of this glacier*

- The remote sensing retrieval of debris cover thickness of Kennicott Glacier and the influences on surface mass balance
 - *Thermal infrared remote sensing based methods*

- Evolutions and GLOF forecast on the Hidden Creek Lake aside Kennicott Glacier
 - *Using methods similar to Merzbacher glacial lake of Central Tienshan to study and forecast the GLOF of Hidden Creek Lake*

All the studies can be combined with and validated by field mass balance and debris thickness measurements